2025年1月2日 星期四

什麼是旋度

 https://www.eet-china.com/mp/a123145.html


https://www.math.sinica.edu.tw/mathmedia/journals/4386

基於物理的機器學習

Here’s a table summarizing the analogy between the loss function in optimization and scalar potential in physics:

AspectLoss Function (Optimization)Scalar Potential (Physics)
DefinitionA scalar function L(θ)L(\theta) that measures the "error" or "cost" for a given set of parameters θ\theta.A scalar field V(r)V(\mathbf{r}) that represents potential energy per unit charge or mass at a point in space.
DomainParameter space θ\theta (e.g., weights of a neural network).Physical space r\mathbf{r} (e.g., 3D spatial coordinates).
Gradient (\nabla)The gradient L(θ)\nabla L(\theta) points in the direction of steepest increase in the loss.The gradient V(r)\nabla V(\mathbf{r}) points in the direction of steepest increase in potential.
Negative Gradient (-\nabla)L(θ)-\nabla L(\theta) gives the direction of steepest decrease in the loss.V(r)-\nabla V(\mathbf{r}) gives the direction of steepest decrease in potential energy.
Physical InterpretationMinimizing L(θ)L(\theta) adjusts parameters to improve model predictions (reduce error).Systems naturally move to minimize potential energy, leading to equilibrium states.
MovementParameters θ\theta are updated iteratively in the direction L(θ)-\nabla L(\theta) to minimize loss.Particles "move downhill" in the direction V(r)-\nabla V(\mathbf{r}) to minimize potential energy.
LandscapeLoss function L(θ)L(\theta) forms a "loss landscape" with hills, valleys, and minima.Potential V(r)V(\mathbf{r}) forms a "potential landscape" with similar features.
GoalFind the global minimum of the loss L(θ)L(\theta).Find the state of lowest potential energy V(r)V(\mathbf{r}).
StochasticityStochastic gradient descent uses noisy estimates of L(θ)\nabla L(\theta), introducing randomness to avoid local minima.Deterministic; no stochasticity in the potential field (but randomness can exist in other contexts, like thermal motion).
ApplicationsOptimization in machine learning (e.g., neural network training).Describing forces in physical systems (e.g., gravitational or electric fields).

沒有留言:

張貼留言